

TMS iCL

Getting started with TMS iCL

Introduction

TMS iCL is a component library. It stands for iOS Component Library. It is a Delphi component library

and as such, it is accessible as Delphi objects with properties, methods, events. The components are

in fact wrappers around the iOS operating system level defined controls, for now mostly visual

controls. In iOS Objective C terminology, UIView types. In this respect it is very similar to the Delphi

VCL standard components like TEdit, TButton, TListbox ... etc. These VCL controls are tiny wrappers

around the Windows operating system controls like EDIT, BUTTON, LISTBOX ... These standard Delphi

controls do not do much more than present the Windows user interface controls as Delphi classes

with properties, method and events. In the case of TMS iCL, these controls are usable from a

FireMonkey form, just like VCL controls are usable from a standard VCL form.

iCL vs FireMonkey

To be usable in iOS applications created with Delphi, iCL controls live on FireMonkey forms in a

FireMonkey mobile application. An iCL control can be used on a FireMonkey form in the same way as

a FireMonkey control is used. Internally, an iCL control is completely different from a FireMonkey

control. Where a FireMonkey control is actually made up of a hierarchy of FireMonkey style objects

(rectangles, labels, lines, scrollbar, animations) that are rendered on a canvas to emulate an

operating system user interface control or to offer a new custom control, the iCL just wraps up an

TMS iCL

existing operating system control as Delphi object. This implies that iCL controls are not style-able, at

least not in the same way a FireMonkey control is style-able. Fortunately, iCL controls and

FireMonkey controls can coexist on the same FireMonkey form. This means you can mix & match

controls and select what fits best for your application.

Advantages & disadvantages of iCL controls

The main advantages of iCL controls are: consistency and performance. Consistency is on various

levels: the appearance of the iCL is 100% consistent with the native operating system user interface

control as it is actually the operating system control itself. The appearance is also 100% consistent

across different operating system versions. This means that an iCL switch control for example will

have the look of iOS6 on a device running iOS 6 and the look of iOS7 on a device running iOS 7

without needing to do anything specific in the application. Not only will the appearance be 100%

consistent but also the behavior. Response to touch, inertia in touch handling, physics like scroll

bounces are guaranteed to behave 100% consistent with the operating system. The second

advantage is performance. As the controls have been developed by Apple and part of the operating

system, we can expect them to be fine-tuned for performance.

One might wonder, are there also disadvantages to iCL controls. Yes, a first disadvantage is that the

controls can by definition not live in the design-time space. The Delphi IDE form designer runs only

on Windows where the iOS control is absent and can thus only made accessible by emulating the

control on the designer. For now, we do this by very basic emulation (to keep runtime code overhead

very low). A second disadvantage is that the iCL will only work on iOS devices. As such, it won’t be

possible to create a cross platform application for Windows, Mac OS-X and iOS. And finally, an iCL

control is not style-able like a FireMonkey control is. Such, it is less customizable.

Hands-on iCL

Let’s get started using iCL controls in FireMonkey applications. After install of the controls, the new

iCL controls are available in the Delphi XE4 component palette from FireMonkey iOS applications.

TMS iCL

This is the list of controls that is currently available:

TMSFMXNativeUIButton: iOS button control that can have different button styles

TMSFMXNativeUISearchBar: iOS search entry

TMSFMXNativeUISlider: iOS slider control

TMSFMXNativeUISwitch: iOS on/off switch control

TMSFMXNativeUITableView: iOS tableview, high performance list with sections that can be set in

group mode or plain mode

TMS iCL

TMSFMXNativeUIToolBar: iOS toolbar control with option to add many predefined iOS toolbar

buttons

TMSFMXNativeUIPickerView: iOS scrolling item picker with support for multiple columns

TMSFMXNativeUIDatePicker: iOS date or time picker or countdown control

TMSFMXNativeUITextView: iOS memo control

TMSFMXNativeUILabel: iOS label control

TMSFMXNativeUIScrollView: iOS scrolling area

TMSFMXNativeUIProgressView: iOS progressbar

TMSFMXNativeUISegmentedControl: iOS segment control

TMSFMXNativeUIStepper: iOS up/down step control

TMSFMXNativeUITextField: iOS edit control

TMSFMXNativeMKMapView: iOS map (Google maps on iOS 5, Apple maps on iOS6 or later)

TMSFMXNativeFMXWrapper: Control that wraps a FireMonkey form for use as view inside a native

iOS control

TMSFMXNativeUIImageView: iOS image control (can display

GIF,JPEG,TIFF,BMP,PNG,DIB,ICO,CUR,XBM images)

TMSFMXNativeUIPopoverController: iOS control to show other views as popup

TMSFMXNativeUIView: iOS base class view

Basic controls

The use of basic controls such as TMSFMXNativeUIButton, TMSFMXNativeUILabel,

TMSFMXNativeUISwitch, etc… is really simple & straightforward. Drop the components on the form

and you’re ready to start using them in the same way you have used VCL controls. For example, the

TMSFMXNativeUIButton has an OnClick event from where you handle button clicks. The

TMSFMXNativeUILabel has a Text property via which you can configure the label text etc…

The TTMSFMXUITableView

A more complex control is the TMSFMXNativeUITableView. A TTMSFMXUITableView consists of

sections with items. At least one section should be added to the TTMSFMXUITableView. The

TTMSFMXUITableView style is either plain (just long list of items) or grouped (where each section is

displayed as a group of items)

At Delphi class level, the TTMSFMXUITableView sections and items are exposed as collections. The

TMSFMXNativeUITableView has a collection of sections where each section has a header (string) and

items collection. The TTMSFMXNativeUITableViewItem in the Items collection has properties Text:

string to set the main text, a Description: string property to set a description text, a Bitmap: TBitmap

to set an optional image associated with the item. At item level, it can also be controlled whether the

item can be edited, deleted, moved,…

TMS iCL

Adding items programmatically to the TTMSFMXUITableView can be done with:

var

 s: TTMSFMXNativeUITableViewSection;

begin

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Cars';

 s.Items.Add.Text := 'Mercedes';

 s.Items.Add.Text := 'Audi';

 s.Items.Add.Text := 'BMW';

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Nature';

 s.Items.Add.Text := 'Birds';

 s.Items.Add.Text := 'Plants';

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Sports';

 s.Items.Add.Text := 'Soccer';

 s.Items.Add.Text := 'Baseball';

end;

Executing this code for a TMSFMXNativeUITableView that is in plain mode

(TMSFMXNativeUITableView.Options.Layout = tvlNormal) results in:

Executing this code for a TMSFMXNativeUITableView that is in grouped mode

(TMSFMXNativeUITableView.Options.Layout = tvlGrouped) results in:

TMS iCL

When an item is clicked, the event OnItemSelect is triggered. This event returns the index of the

section in which this item is and its index in the section’s item collection. When we enable editing on

the TTMSFMXUITableView, an Edit button appears in the top right corner. Editing is enabled via:

TMSFMXNativeUITableView1.Options.Editing.Enabled: Boolean.

When in editing mode an item is deleted or moved, the events OnItemDelete or OnItemMove are

triggered respectively.

While we have exposed sections and items of the TTMSFMXUITableView as collection properties, the

TTMSFMXUITableView component can also be easily used in virtual mode. In virtual mode, all data is

not loaded at once, but via events, data is requested for the visible sections and items. For virtual

mode, the first thing to do is to implement the events OnGetNumberOfSections and

OnGetNumberOfRowsInSection. Via these events the number of sections in the

TTMSFMXUITableView should be returned as well as the number of rows in each section. For a

simple case of one section with 10.000 rows, this results in the code:

procedure TForm4.TMSFMXNativeUITableView1GetNumberOfRowsInSection(

 Sender: TObject; ASection: Integer; var ANumberOfRows: Integer);

begin

 if ASection = 0 then

 ANumberOfRows := 10000;

end;

procedure TForm4.TMSFMXNativeUITableView1GetNumberOfSections(Sender:

TObject;

TMS iCL

 var ANumberOfSections: Integer);

begin

 ANumberOfSections := 1;

end;

Then we also need to return via events the text for items in the TTMSFMXUITableView via the event

OnGetItemText and optionally also the description for the item via OnGetItemDescription.

procedure TForm4.TMSFMXNativeUITableView1GetItemText(Sender: TObject;

ASection,

 ARow: Integer; var AText: string);

begin

 if (ASection = 0) then

 begin

 AText := 'Virtual item ' + IntToStr(ARow);

 end;

end;

procedure TForm4.TMSFMXNativeUITableView1GetItemDescription(Sender:

TObject;

 ASection, ARow: Integer; var ADescription: string);

begin

 if (ASection = 0) then

 begin

 ADescription := 'The description for item ' + IntToStr(ARow);

 end;

end;

TMS iCL

There are a lot more features and options in the TTMSFMXUITableView but that is beyond the scope

of an iCL introduction article. The TTMSFMXUITableView has features to show a search or filter bar, a

lookupbar, perform sorting, add a toolbar, having custom layouts in items, show detail views from

item clicks and much more. We could dedicate an entire article just to the TTMSFMXUITableView

alone.

The TTMSFMXMkMapView

A TMSFMXNativeMKMapView control provides an embeddable map interface, similar to the one

provided by the iOS Maps application. You use this class as-is to display map information and to

manipulate the map contents from your application. You can center the map on a given coordinate,

specify the size of the area you want to display, and annotate the map with custom information.

Most important to get started with the TTMSFMXMkMapView is to set the region that is displayed in

the map. This can be done with the SetRegion() call. This is method has 3 parameters: The top left

longitude & latitude and the bottom right longitude & latitude as well as an animation parameter to

decide whether the map is shown with or without animation on the specified coordinates. At the

same time, when the user pans or zooms in de map and as a result of this the region changes, the

event OnRegionDidChangeAnimated is triggered.

TMS iCL

The second most important feature is to deal with annotations on the map. The annotations can

either be a pin or a custom view / image. To add an annotation at the position where the user

clicked, use the code:

var

 loc: TTMSFMXNativeMKMapLocation;

begin

 loc := TMSFMXNativeMKMapView1.XYToCoordinate(

 TMSFMXNativeMKMapView1.Width / 2,

 TMSFMXNativeMKMapView1.Height / 2);

 TMSFMXNativeMKMapView1.AddAnnotation(loc, 'Hello World', 'Subtitle');

end;

This code snippet adds an annotation in the center of the map with an image attached to it:

var

 loc: TTMSFMXNativeMKMapLocation;

 ann: TTMSFMXNativeMKAnnotation;

begin

 loc := TMSFMXNativeMKMapView1.XYToCoordinate(

 TMSFMXNativeMKMapView1.Width / 2,

 TMSFMXNativeMKMapView1.Height / 2);

 ann := TMSFMXNativeMKMapView1.AddAnnotation(loc, 'Hello World',

'Subtitle');

 ann.Bitmap.LoadFromFile(ExtractFilePath(ParamStr(0))+'pin.png');

end;

TMS iCL

Conclusion

With TMS iCL we have tried to offer a comprehensive set of easy to use controls that give the perfect

native look & feel and performance of iOS controls in Delphi FireMonkey applications. We have tried

to expose as much as possible of the features that are in the iOS controls. In future version of TMS

iCL we’ll introduce more iOS controls and try to expose the maximum number of built-in capabilities

in these iOS controls. TMS iCL offers as such an extra choice and flexibility to create FireMonkey

applications with Delphi XE4 with the best possible user-interface you want to offer to your

customers. A fully functional trial download of TMS iCL with PDF developers guide and sample

applications can be downloaded via http://www.tmssoftware.com/site/tmsicl.asp

http://www.tmssoftware.com/site/tmsicl.asp

